Author - Mohit Rathore mrmohitrathoremr@gmail.com - markroxor.in
Licensed under The MIT License - https://opensource.org/licenses/MIT
import numpy as np
from fromscratchtoml.toolbox.random import Distribution
from fromscratchtoml.toolbox import binary_visualize
%matplotlib inline
X1 = Distribution.linear(pts=100,
mean=[5, 10],
covr=[[1.5, 1], [1, 1.5]])
X2 = Distribution.linear(pts=100,
mean=[10, 5],
covr=[[1.5, 1], [1, 1.5]])
X3 = Distribution.linear(pts=100,
mean=[15, 20],
covr=[[1.5, 1], [1, 1.5]])
Y1 = np.ones(X1.shape[0])
Y2 = -np.ones(X2.shape[0])
Y3 = 2*np.ones(X3.shape[0])
X = np.vstack((X1, X2, X3))
y = np.vstack((Y1, Y2, Y3))
binary_visualize(X, y)
X1 = Distribution.linear(pts=50,
mean=[8, 20],
covr=[[1.5, 1], [1, 2]])
X2 = Distribution.linear(pts=50,
mean=[8, 15],
covr=[[1.5, -1], [-1, 2]])
X3 = Distribution.linear(pts=50,
mean=[15, 20],
covr=[[1.5, 1], [1, 2]])
X4 = Distribution.linear(pts=50,
mean=[15, 15],
covr=[[1.5, -1], [-1, 2]])
X1 = np.vstack((X1, X2))
X2 = np.vstack((X3, X4))
Y1 = np.ones(X1.shape[0])
Y2 = -np.ones(X2.shape[0])
X = np.vstack((X1, X2))
y = np.vstack((Y1, Y2))
binary_visualize(X, y)
X1 = Distribution.radial_binary(pts=1000,
mean=[0, 0],
st=1,
ed=2)
X2 = Distribution.radial_binary(pts=1000,
mean=[0, 0],
st=4,
ed=5)
Y1 = np.ones(X1.shape[0])
Y2 = -np.ones(X2.shape[0])
X = np.vstack((X1, X2))
y = np.vstack((Y1, Y2))
binary_visualize(X, y)
X1 = Distribution.linear(pts=100,
mean=[6, 10],
covr=[[1.5, 1], [1, 1.5]])
X2 = Distribution.linear(pts=100,
mean=[9, 5],
covr=[[1.5, 1], [1, 1.5]])
X3 = Distribution.linear(pts=100,
mean=[-9, -5],
covr=[[1.5, 1], [1, 1.5]])
X4 = Distribution.linear(pts=100,
mean=[-6, -10],
covr=[[1.5, 1], [1, 1.5]])
Y1 = -1*np.ones(X1.shape[0])
Y2 = 1*np.ones(X2.shape[0])
Y3 = 2*np.ones(X3.shape[0])
Y4 = 3*np.ones(X4.shape[0])
X = np.vstack((X1, X2, X3 ,X4))
y = np.vstack((Y1, Y2, Y3, Y4))
binary_visualize(X, y)
X1 = Distribution.radial_binary(pts=1000,
mean=[0, 0],
st=1,
ed=2)
X2 = Distribution.radial_binary(pts=1000,
mean=[0, 0],
st=4,
ed=5)
X3 = Distribution.radial_binary(pts=1000,
mean=[0, 0],
st=6,
ed=7)
X4 = Distribution.radial_binary(pts=1000,
mean=[0, 0],
st=8,
ed=9)
Y1 = -np.ones(X1.shape[0])
Y2 = np.ones(X2.shape[0])
Y3 = 2*np.ones(X3.shape[0])
Y4 = 3000*np.ones(X4.shape[0])
X = np.vstack((X1, X2, X3, X4))
y = np.vstack((Y1, Y2, Y3, Y4))
binary_visualize(X, y)