 
API Reference
Modules:
- interfaces– Core gensim interfaces
- utils– Various utility functions
- matutils– Math utils
- corpora.bleicorpus– Corpus in Blei’s LDA-C format
- corpora.csvcorpus– Corpus in CSV format
- corpora.dictionary– Construct word<->id mappings
- corpora.hashdictionary– Construct word<->id mappings
- corpora.indexedcorpus– Random access to corpus documents
- corpora.lowcorpus– Corpus in List-of-Words format
- corpora.malletcorpus– Corpus in Mallet format of List-Of-Words.
- corpora.mmcorpus– Corpus in Matrix Market format
- corpora.sharded_corpus– Corpus stored in separate files
- corpora.svmlightcorpus– Corpus in SVMlight format
- corpora.textcorpus– Building corpora with dictionaries
- corpora.ucicorpus– Corpus in UCI bag-of-words format
- corpora.wikicorpus– Corpus from a Wikipedia dump
- models.ldamodel– Latent Dirichlet Allocation
- models.ldamulticore– parallelized Latent Dirichlet Allocation
- models.lsimodel– Latent Semantic Indexing
- models.ldaseqmodel– Dynamic Topic Modeling in Python
- models.tfidfmodel– TF-IDF model
- models.rpmodel– Random Projections
- models.hdpmodel– Hierarchical Dirichlet Process
- models.logentropy_model– LogEntropy model
- models.normmodel– Normalization model
- models.lsi_dispatcher– Dispatcher for distributed LSI
- models.lsi_worker– Worker for distributed LSI
- models.lda_dispatcher– Dispatcher for distributed LDA
- models.lda_worker– Worker for distributed LDA
- models.word2vec– Deep learning with word2vec
- models.doc2vec– Deep learning with paragraph2vec
- models.phrases– Phrase (collocation) detection
- models.wrappers.ldamallet– Latent Dirichlet Allocation via Mallet
- models.wrappers.dtmmodel– Dynamic Topic Models (DTM) and Dynamic Influence Models (DIM)
- models.wrappers.ldavowpalwabbit– Latent Dirichlet Allocation via Vowpal Wabbit
- similarities.docsim– Document similarity queries
- similarities.index– Fast Approximate Nearest Neighbor Similarity with Annoy package
- topic_coherence.aggregation– Aggregation module
- topic_coherence.direct_confirmation_measure– Direct confirmation measure module
- topic_coherence.indirect_confirmation_measure– Indirect confirmation measure module
- topic_coherence.probability_estimation– Probability estimation module
- topic_coherence.segmentation– Segmentation module
- scripts.glove2word2vec– Convert glove format to word2vec
- scripts.make_wikicorpus– Convert articles from a Wikipedia dump to vectors.
- scripts.word2vec_standalone– Train word2vec on text file CORPUS
- parsing.porter– Porter Stemming Algorithm
- parsing.preprocessing– Functions to preprocess raw text
- summarization.bm25– BM25 ranking function
- summarization.commons– Common graph functions
- summarization.graph– TextRank graph
- summarization.keywords– Keywords for TextRank summarization algorithm
- summarization.pagerank_weighted– Weighted PageRank algorithm
- summarization.summarizer– TextRank Summariser
- summarization.syntactic_unit– Syntactic Unit class
- summarization.textcleaner– Summarization pre-processing